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Permeability of periodic porous media
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The permeability of the two-dimensional periodic arrays of cylinders is obtained numerically as a function
of the dimensionless wave numidb, wherek is the wave number based on the distance between particles in
the streamwise direction arid is the diameter. To isolate tHeD dependencel) and the porosity are held
fixed. The latter is achieved by making the product of distance between particles in the cross-stream and
streamwise directions constant. The numerical results show that the permeability increaded with the
increase is not monotonic. In particular, the permeability decreases3erkD<~ 7.7, and becomes locally
minimum atkD~7.7. This value okD is significant because it is the smallest wave number for which the
streamwise area-fraction spectrum is zero. D5 and 7. AkD<11, the permeability increases wikiD.

Our numerical simulations also show that fdd=~ 7.7 the pressure distribution in the cross-stream direction is
relatively flat which again is a consequence of the fact that the area-fraction distribution in the flow direction
is approximately constantS1063-651X99)04801-1

PACS numbds): 47.55.Mh

I. INTRODUCTION the assumptions used for driving it are valid; i.e., the medium
is random, completely wéthe surface tension effects are not
The direct numerical simulation capability for investigat- preseny, and the fluid is Newtoniahl,5—7. A porous me-
ing the porous media flows is important in a number of ap-dium, in general, may not be random, but have a distinct
plications. The objectives in these applications may rangenicrostructure, i.e., the particle arrangement contains a pre-
from determining the flow field for the given velocity and ferred direction for the flowing fluid. This may be the case
pressure boundary conditions to designing a porous mediunvhen the particles are arranged in a systematic pattern, as is
with the desired flow properties. An example of the former isthe case for many man-made porous materials. To apply Dar-
the direct numerical simulation of underground flows in thecy’s law in such cases, the macroscopic permeability should
oil recovery applications. Examples of the latter includebe determined by accounting for the microstructi@el].
many applications where the objective is to design the opti- It is possible to numerically estimate the macroscopic per-
mal porous medium geometry for trapping or absorbing flu-meability of a microstructured porous medium by including
ids. It is noteworthy that even though the flow field in a its key microstructural features in the computational domain.
porous medium varies at length scales comparable to the siZghere are several direct numerical studies where the perme-
of particles, in many applications a detailed knowledge ofability of a collection of periodically arranged particles is
these particle scale variations is not required. Instead, an adetermined numericallfsee[3,11,17, and the references
eraged macroscopic response is sufficient. A detailed knowlisted in these papexsFor example, it was shown 11,12
edge of the particle scale variations, however, can be helpfuhat the permeability of the face-centered-cufac), body-
in designing the optimal porous medium for specialized apcentered-cubic(bcc), and simple-cubic(so lattices of
plications. spheres—with the same porosity abd—are different. In
A macroscale model such as Darcy’'s law is extremelyother words, the arrangement of particles relative to the flow
useful because it allows us to predict the macroscopic flovdirection is important in determining the permeability.
field without solving the detailed fluid flow problem. Darcy’s  In this paper we study this dependence of permeability on
law states that the volume averaged superficial fluid velocitthe microstructure by continuously varyikdD (or the area-

U is proportional to the pressure gradient: fraction distribution along the flow direction for a two-
dimensional porous medium. Our simulations show that for a
_Vp given porosity and patrticle size, the permeability depends on
U=« u’ @D the wavelength\ or the distance between the particles in the

flow direction[see Fig. 1a)]. The diameteD and\ can be

where u is the viscosity,p is the pressure, and is the used to define a dimensionless wave nurrikderfor the po-
effective permeability tensor for the medium. The permeabiltous medium, wherk=2#/\. For smallkD, the permeabil-
ity tensorx for a medium depends on several factors, includ-ty increases with increasingD, but this increase is not
ing the porosity and the particle size distribution. Severaimonotonic. The permeability starts to decreaskel+=5 and
correlations have been developed to relate the permeabiliyeaches a local minimum &D~7.7. As we will discuss in
of a porous medium to these distributiosee[1-4]), and the next section, thkD value at this local minimum of per-
the references listed in these papers meability is significant because it is the smallest dimension-

The permeability of a porous medium also depends on théess wave number for which the area-fraction spectrum is
microstructure or the relative arrangement of particles. Irzero. Thus the changes in permeability and area-fraction dis-
fact, analysis based on Darcy’s law works well only whentribution with kD are related.
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FIG. 1. (a) A schematic of a periodic array of cylinders is shown. The interparticle distance adihection isA and in the cross-stream
direction isw. The shaded area is a typical computational domain for our simulation$he porous medium fox=1.64, (c) the porous
medium forn=2.0.

Il. PERMEABILITY AND AREA-FRACTION sion for ¢, can be obtained by adding the areas of intersec-
DISTRIBUTION OF A PERIODIC POROUS MEDIUM tions of N(z+x) particles that have centers at a distance

In this study we will assume that the particles cylin- from the planez

derg are arranged periodically in the space as shown in Fig. D/2

1(a). Therefore away from the entrance and the exit the ve- gba(z):J N(x+z)2y/D?/4—x? dx. (2.1

locity field is periodic, and the pressure drop for each period ~bi2

cell is constant. This constant pressure drop for_ a period CeF\Iote that the integration limits are fromD/2 to D/2, as

determlr_les the permgablllty of t_he porous med-|um. . ._only the particles that are at a distance less tRdrom the
A typlcalicomputanonal doma}ln useq Inour simulations ISplanez have a nonzero area of intersecti@ee[13] where

shown in F'_g' lb).'The domain is specnﬁgd n te'rms Qf WO ihe area fraction was obtained for the spherical particles

parameters: the distanadeused for arranging particles in the Assuming thatN(z) is in the Fourier transform class, the

;Iowt.dlreé:t;rézz;;\]d t_he W'dtth’v't Tt?] ensu(rje otthat the ﬁollgjs Fourier transform of the above expression can be obtained
raction . W IS constant, the productw was ne using the convolution-multiplication theorem

fixed at 4 and the particle radil®=1. Thus the solid frac-

tion for our simulations is 0.393. da(K)=D20O(kD)N(K), (2.2
To define the area fraction on the planes perpendicular to

the flow direction—assumed here to be theaxis of the where k is the wave  number, ©(kD)

coordinate system—we will assume that the particles are cyl- .10 . 1T 2. . . .

inders of radiusR. The number density distribution is de- — Y125~ x%e*P*dx is the blockage functiongq(K) is

noted byN(z). Let the area fractio,(z) be the fraction of the Fourier transform of,(z), andN(k)is the Fourier trans-

the planez covered by the particles. The following expres- form of N(z). The graph o® (kD) is shown in Fig. 2. From
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FIG. 2. ®(kD) is plotted as a function dfD.

this figure we note that the set of zeros ®{kD) is kD
=7.663,14.031,20.347. . .Expression2.2), therefore, im-
plies that the dimensionless wave numbkE3, for which

O (kD) is zero, areblocked i.e., are missing in the spectrum
of the area fraction.

To understand the physical significance @{kD) we
note that ifN(k)is nonzero only for the wave numbers for
which © (kD) is zero, the area available to the flowing fluid
in the z direction will be constant, as in this cagg(k)=0
for all k>0. On the other hand, i® (kD) is nonzero for
N(k)# 0, the area fraction will vary witlz. For example, for
the periodic porous medium shown in Fig(bl N(k)
=X,0(k—27mn/\), where n is an integer and\/R

=2m/kR=1.64 is the distance between particles in the flow

direction. In this case, for the first nonzero modeNt(k),

i.e., kD=7.66,0 (kD) is zero, and thus this mode does not
cause any variation in the area available to the fluid. The area

fraction—i.e., the convolution of Eq2.1)—is, however, not
exactly constant because only the first zer@®qdkD) coin-
cides with the first nonzero term (k). For the higher
order modes oN(k), ® (kD) is nonzero. But, sinc@® (kD)

is small for the higher order modes W{k), the area fraction
varies—but only slightly—withz. ForA=2 (kD=6.28), on
the other hand, sinc®(6.28)+0, the area fraction varies
substantially withz [see Fig. 1c)].

It is noteworthy that for the sc, fcc, and bcc lattices
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FIG. 3. The numerically computed permeabiliyR? is shown
as a function okD.
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FIG. 4. The dimensionless pressure distributions in the cross-
section direction are shown at five differenfocations.(a) A\=2.0,
(b) A=1.64.

with the same porosity, th&D value along the flow

direction is different. For example, when the solid fraction is
0.45 thekD values for the sc, fcc, and bcc lattices are
5.97, 6.98, and 9.48, respectively. As noted before, the
past numerical studies show that the permeability of the sc
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lattice is smaller than that of the fcc lattice, but the perme- We first note that the permeability of a channel of width
ability of the fcc lattice is larger than that of the bcc lattice varies aswv?. Since for our simulationsw=4 and the wave
[8,9]. Thus the permeability changes nonmonotonicallynumberk is inversely related ta, the width of an equivalent
with kD. The permeability for other values &D is not flat channel increases withD. The computed values of the
known, as in these studies only the above three cubic lattic§sermeabilities are shown in Fig. 3 as a function of the di-
were studied. This nonmonotonic variation of permeabilitymensjonless wave numbkD. From this figure we note that

for spherical particles is interesting, and needs further invesgy, kp<5. as expected, the permeability increases with in-

tigation. creasingkD. But, for 5<k<7.7 the permeability decreases
with kD. The permeability reaches a local minimumkad

l. PROBLEM STATEMENT ~7.7. After reaching this local minimum, the permeability

. A_‘ND_BOUNDARY COND_'T'ONS oo increases with increasingD. The calculations were carried
Our obj_ectlve is to numerically §|mulate the periodic po- out forkD up to 11. Note that fokD~7.7, ®(7.7)~0, i.e.,
rous media flows, and use the simulation results both fof..c\ ~1ue ofkD is missing in the area-fraction spectrisee

es’umaﬁng the effective permeability and for understandlngSeC_ I). This shows that the area-fraction distribution along
the microscale flow features. The Navier-Stokes and conti:

nuity equations are solved using the finite-element method ir.t}he flow direction plays a role in determining the permeabil-
the periodic computational domains using the boundary con™" her i ing f foD = is that th
ditions described below. The Reynolds number is assumed to ANOther interesting feature fdetD=7.7 is that the pres-

be zero. The details of the numerical method are given irpU"® distribution in the cross-stream direction is relatively
Ref. [14]. flat [see Fig. 4a)]. For kD=6.28, on the other hand, the

The following boundary conditions are applied at thePressure varies substantially in the cross-stream direction
boundaries of computational domain. At the inlet of the com1S€€ Fig. 40)]. This again is related to the area-fraction
putational domain the incoming superficial velocity is variation in the flow direction. In particular, when the area
specified. Along the sides of the computational domain peri_available to the flow is constant or varies relatively slowly in
odic boundary conditions, i.eu=0, dv/dx=0, are applied the streamwise direction the pressure distribution in the
whereu is the x component of velocity and is they com- ~ Cross-stream direction is relatively flat. .
ponent of velocity. At the exit of the computational domain __Finally, we note that for our periodic porous medium
the no-traction boundary condition is applied, and the no-sligV(k) contains higher order modes—i.e., in addition to the

boundary condition is imposed at the surface of particles. Primary mode ak=2a/A—for which ®(kD)may not be
zero. For example, even for/R=1.64 the area fraction is

not exactly constant in space. But, sif@¢kD) is small for

the higher order modes, they lead to only small variations in
For our simulations the permeabilityc along the the area fraction along the streamwise direction. Further-

z direction is calculated by using the definition of Darcy’s more, as® (kD) decreases with increasingD, the depen-

IV. RESULTS AND CONCLUSIONS

law: dence of permeability on the area fraction decreases with
kD, and the permeability approaches the value for an equiva-
e mu @.1) lent flat channel.
Ap/N’ '
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