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Permeability of periodic porous media

F. J. Alcocer, V. Kumar, and P. Singh
Department of Mechanical Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 0710

~Received 3 June 1998!

The permeability of the two-dimensional periodic arrays of cylinders is obtained numerically as a function
of the dimensionless wave numberkD, wherek is the wave number based on the distance between particles in
the streamwise direction andD is the diameter. To isolate thekD dependence,D and the porosity are held
fixed. The latter is achieved by making the product of distance between particles in the cross-stream and
streamwise directions constant. The numerical results show that the permeability increases withkD, but the
increase is not monotonic. In particular, the permeability decreases for;5,kD,;7.7, and becomes locally
minimum atkD'7.7. This value ofkD is significant because it is the smallest wave number for which the
streamwise area-fraction spectrum is zero. ForkD,5 and 7.7,kD,11, the permeability increases withkD.
Our numerical simulations also show that forkD'7.7 the pressure distribution in the cross-stream direction is
relatively flat which again is a consequence of the fact that the area-fraction distribution in the flow direction
is approximately constant.@S1063-651X~99!04801-1#

PACS number~s!: 47.55.Mh
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I. INTRODUCTION

The direct numerical simulation capability for investiga
ing the porous media flows is important in a number of a
plications. The objectives in these applications may ra
from determining the flow field for the given velocity an
pressure boundary conditions to designing a porous med
with the desired flow properties. An example of the forme
the direct numerical simulation of underground flows in t
oil recovery applications. Examples of the latter inclu
many applications where the objective is to design the o
mal porous medium geometry for trapping or absorbing
ids. It is noteworthy that even though the flow field in
porous medium varies at length scales comparable to the
of particles, in many applications a detailed knowledge
these particle scale variations is not required. Instead, an
eraged macroscopic response is sufficient. A detailed kno
edge of the particle scale variations, however, can be hel
in designing the optimal porous medium for specialized
plications.

A macroscale model such as Darcy’s law is extrem
useful because it allows us to predict the macroscopic fl
field without solving the detailed fluid flow problem. Darcy
law states that the volume averaged superficial fluid velo
U is proportional to the pressure gradient:

U5k
“p

m
, ~1.1!

where m is the viscosity,p is the pressure, andk is the
effective permeability tensor for the medium. The permea
ity tensork for a medium depends on several factors, inclu
ing the porosity and the particle size distribution. Seve
correlations have been developed to relate the permeab
of a porous medium to these distributions~see@1–4#!, and
the references listed in these papers!.

The permeability of a porous medium also depends on
microstructure or the relative arrangement of particles.
fact, analysis based on Darcy’s law works well only wh
PRE 591063-651X/99/59~1!/711~4!/$15.00
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the assumptions used for driving it are valid; i.e., the medi
is random, completely wet~the surface tension effects are n
present!, and the fluid is Newtonian@1,5–7#. A porous me-
dium, in general, may not be random, but have a disti
microstructure, i.e., the particle arrangement contains a
ferred direction for the flowing fluid. This may be the ca
when the particles are arranged in a systematic pattern,
the case for many man-made porous materials. To apply D
cy’s law in such cases, the macroscopic permeability sho
be determined by accounting for the microstructure@8,10#.

It is possible to numerically estimate the macroscopic p
meability of a microstructured porous medium by includi
its key microstructural features in the computational doma
There are several direct numerical studies where the per
ability of a collection of periodically arranged particles
determined numerically~see @3,11,12#, and the references
listed in these papers!. For example, it was shown in@11,12#
that the permeability of the face-centered-cubic~fcc!, body-
centered-cubic ~bcc!, and simple-cubic ~sc! lattices of
spheres—with the same porosity andD—are different. In
other words, the arrangement of particles relative to the fl
direction is important in determining the permeability.

In this paper we study this dependence of permeability
the microstructure by continuously varyingkD ~or the area-
fraction distribution! along the flow direction for a two-
dimensional porous medium. Our simulations show that fo
given porosity and particle size, the permeability depends
the wavelengthl or the distance between the particles in t
flow direction @see Fig. 1~a!#. The diameterD andl can be
used to define a dimensionless wave numberkD for the po-
rous medium, wherek52p/l. For smallkD, the permeabil-
ity increases with increasingkD, but this increase is no
monotonic. The permeability starts to decrease atkD'5 and
reaches a local minimum atkD'7.7. As we will discuss in
the next section, thekD value at this local minimum of per
meability is significant because it is the smallest dimensi
less wave number for which the area-fraction spectrum
zero. Thus the changes in permeability and area-fraction
tribution with kD are related.
711 ©1999 The American Physical Society
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FIG. 1. ~a! A schematic of a periodic array of cylinders is shown. The interparticle distance in thez direction isl and in the cross-stream
direction isw. The shaded area is a typical computational domain for our simulations.~b! The porous medium forl51.64, ~c! the porous
medium forl52.0.
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II. PERMEABILITY AND AREA-FRACTION
DISTRIBUTION OF A PERIODIC POROUS MEDIUM

In this study we will assume that the particles~or cylin-
ders! are arranged periodically in the space as shown in F
1~a!. Therefore away from the entrance and the exit the
locity field is periodic, and the pressure drop for each per
cell is constant. This constant pressure drop for a period
determines the permeability of the porous medium.

A typical computational domain used in our simulations
shown in Fig. 1~b!. The domain is specified in terms of tw
parameters: the distancel used for arranging particles in th
flow direction and the widthw. To ensure that the solid
fraction 0.5pR2/lw is constant, the productlw was held
fixed at 4 and the particle radiusR51. Thus the solid frac-
tion for our simulations is 0.393.

To define the area fraction on the planes perpendicula
the flow direction—assumed here to be thez axis of the
coordinate system—we will assume that the particles are
inders of radiusR. The number density distribution is de
noted byN(z). Let the area fractionfa(z) be the fraction of
the planez covered by the particles. The following expre
g.
-
d
ll

to

l-

sion for fa can be obtained by adding the areas of inters
tions of N(z1x) particles that have centers at a distancex
from the planez:

fa~z!5E
2D/2

D/2

N~x1z!2AD2/42x2 dx. ~2.1!

Note that the integration limits are from2D/2 to D/2, as
only the particles that are at a distance less thanR from the
planez have a nonzero area of intersection~see@13# where
the area fraction was obtained for the spherical particles!.

Assuming thatN(z) is in the Fourier transform class, th
Fourier transform of the above expression can be obtai
using the convolution-multiplication theorem

fa~k!5D2Q~kD!N~k!, ~2.2!

where k is the wave number, Q(kD)

5* 21/2
1/2 2A 1

4 2x2eikDxdx is the blockage function,fa(k) is

the Fourier transform offa(z), andN(k)is the Fourier trans-
form of N(z). The graph ofQ(kD) is shown in Fig. 2. From
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this figure we note that the set of zeros ofQ(kD) is kD
57.663,14.031,20.347, . . . .Expression~2.2!, therefore, im-
plies that the dimensionless wave numberskD, for which
Q(kD) is zero, areblocked, i.e., are missing in the spectrum
of the area fraction.

To understand the physical significance ofQ(kD) we
note that ifN(k)is nonzero only for the wave numbers fo
which Q(kD) is zero, the area available to the flowing flu
in the z direction will be constant, as in this casefa(k)50
for all k.0. On the other hand, ifQ(kD) is nonzero for
N(k)Þ0, the area fraction will vary withz. For example, for
the periodic porous medium shown in Fig. 1~b!, N(k)
5(nd(k22pn/l), where n is an integer and l/R
52p/kR51.64 is the distance between particles in the fl
direction. In this case, for the first nonzero mode ofN(k),
i.e., kD57.66,Q(kD) is zero, and thus this mode does n
cause any variation in the area available to the fluid. The a
fraction—i.e., the convolution of Eq.~2.1!—is, however, not
exactly constant because only the first zero ofQ(kD) coin-
cides with the first nonzero term ofN(k). For the higher
order modes ofN(k), Q(kD) is nonzero. But, sinceQ(kD)
is small for the higher order modes ofN(k), the area fraction
varies—but only slightly—withz. For l52 ~kD56.28!, on
the other hand, sinceQ(6.28)Þ0, the area fraction varie
substantially withz @see Fig. 1~c!#.

It is noteworthy that for the sc, fcc, and bcc lattic

FIG. 2. Q(kD) is plotted as a function ofkD.

FIG. 3. The numerically computed permeabilityk/R2 is shown
as a function ofkD.
t
ea

with the same porosity, thekD value along the flow
direction is different. For example, when the solid fraction
0.45 the kD values for the sc, fcc, and bcc lattices a
5.97, 6.98, and 9.48, respectively. As noted before,
past numerical studies show that the permeability of the

FIG. 4. The dimensionless pressure distributions in the cro
section direction are shown at five differentz locations.~a! l52.0,
~b! l51.64.
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lattice is smaller than that of the fcc lattice, but the perm
ability of the fcc lattice is larger than that of the bcc latti
@8,9#. Thus the permeability changes nonmonotonica
with kD. The permeability for other values ofkD is not
known, as in these studies only the above three cubic latt
were studied. This nonmonotonic variation of permeabi
for spherical particles is interesting, and needs further inv
tigation.

III. PROBLEM STATEMENT
AND BOUNDARY CONDITIONS

Our objective is to numerically simulate the periodic p
rous media flows, and use the simulation results both
estimating the effective permeability and for understand
the microscale flow features. The Navier-Stokes and co
nuity equations are solved using the finite-element metho
the periodic computational domains using the boundary c
ditions described below. The Reynolds number is assume
be zero. The details of the numerical method are given
Ref. @14#.

The following boundary conditions are applied at t
boundaries of computational domain. At the inlet of the co
putational domain the incoming superficial velocityU is
specified. Along the sides of the computational domain p
odic boundary conditions, i.e.,u50, ]v/]x50, are applied,
whereu is thex component of velocity andv is they com-
ponent of velocity. At the exit of the computational doma
the no-traction boundary condition is applied, and the no-
boundary condition is imposed at the surface of particles

IV. RESULTS AND CONCLUSIONS

For our simulations the permeabilityk along the
z direction is calculated by using the definition of Darcy
law:

k5
mU

Dp/l
, ~4.1!

whereDp is the pressure drop over the distancel, m is the
viscosity, andU is the superficial velocity. As noted befor
for our simulations the porosity is 0.607, and the viscos
and the superficial velocity are held fixed.
n
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We first note that the permeability of a channel of widthw
varies asw2. Since for our simulationslw54 and the wave
numberk is inversely related tol, the width of an equivalent
flat channel increases withkD. The computed values of th
permeabilities are shown in Fig. 3 as a function of the
mensionless wave numberkD. From this figure we note tha
for kD,5, as expected, the permeability increases with
creasingkD. But, for 5,k,7.7 the permeability decrease
with kD. The permeability reaches a local minimum atkD
'7.7. After reaching this local minimum, the permeabili
increases with increasingkD. The calculations were carrie
out for kD up to 11. Note that forkD'7.7,Q(7.7)'0, i.e.,
this value ofkD is missing in the area-fraction spectrum~see
Sec. II!. This shows that the area-fraction distribution alo
the flow direction plays a role in determining the permeab
ity.

Another interesting feature forkD57.7 is that the pres-
sure distribution in the cross-stream direction is relativ
flat @see Fig. 4~a!#. For kD56.28, on the other hand, th
pressure varies substantially in the cross-stream direc
@see Fig. 4~b!#. This again is related to the area-fractio
variation in the flow direction. In particular, when the ar
available to the flow is constant or varies relatively slowly
the streamwise direction the pressure distribution in
cross-stream direction is relatively flat.

Finally, we note that for our periodic porous mediu
N(k) contains higher order modes—i.e., in addition to t
primary mode atk52p/l—for which Q(kD)may not be
zero. For example, even forl/R51.64 the area fraction is
not exactly constant in space. But, sinceQ(kD) is small for
the higher order modes, they lead to only small variations
the area fraction along the streamwise direction. Furth
more, asQ(kD) decreases with increasingkD, the depen-
dence of permeability on the area fraction decreases w
kD, and the permeability approaches the value for an equ
lent flat channel.
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